3.501 \(\int \frac{\sqrt{a-b x}}{x^{3/2}} \, dx\)

Optimal. Leaf size=47 \[ -\frac{2 \sqrt{a-b x}}{\sqrt{x}}-2 \sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a-b x}}\right ) \]

[Out]

(-2*Sqrt[a - b*x])/Sqrt[x] - 2*Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a - b*x]]

________________________________________________________________________________________

Rubi [A]  time = 0.0163847, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {47, 63, 217, 203} \[ -\frac{2 \sqrt{a-b x}}{\sqrt{x}}-2 \sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a-b x}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a - b*x]/x^(3/2),x]

[Out]

(-2*Sqrt[a - b*x])/Sqrt[x] - 2*Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a - b*x]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a-b x}}{x^{3/2}} \, dx &=-\frac{2 \sqrt{a-b x}}{\sqrt{x}}-b \int \frac{1}{\sqrt{x} \sqrt{a-b x}} \, dx\\ &=-\frac{2 \sqrt{a-b x}}{\sqrt{x}}-(2 b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a-b x^2}} \, dx,x,\sqrt{x}\right )\\ &=-\frac{2 \sqrt{a-b x}}{\sqrt{x}}-(2 b) \operatorname{Subst}\left (\int \frac{1}{1+b x^2} \, dx,x,\frac{\sqrt{x}}{\sqrt{a-b x}}\right )\\ &=-\frac{2 \sqrt{a-b x}}{\sqrt{x}}-2 \sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a-b x}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0620808, size = 69, normalized size = 1.47 \[ -\frac{2 \left (\sqrt{a} \sqrt{b} \sqrt{x} \sqrt{1-\frac{b x}{a}} \sin ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )+a-b x\right )}{\sqrt{x} \sqrt{a-b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a - b*x]/x^(3/2),x]

[Out]

(-2*(a - b*x + Sqrt[a]*Sqrt[b]*Sqrt[x]*Sqrt[1 - (b*x)/a]*ArcSin[(Sqrt[b]*Sqrt[x])/Sqrt[a]]))/(Sqrt[x]*Sqrt[a -
 b*x])

________________________________________________________________________________________

Maple [A]  time = 0.02, size = 66, normalized size = 1.4 \begin{align*} -2\,{\frac{\sqrt{-bx+a}}{\sqrt{x}}}-{\sqrt{b}\arctan \left ({\sqrt{b} \left ( x-{\frac{a}{2\,b}} \right ){\frac{1}{\sqrt{-b{x}^{2}+ax}}}} \right ) \sqrt{x \left ( -bx+a \right ) }{\frac{1}{\sqrt{x}}}{\frac{1}{\sqrt{-bx+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b*x+a)^(1/2)/x^(3/2),x)

[Out]

-2*(-b*x+a)^(1/2)/x^(1/2)-b^(1/2)*arctan(b^(1/2)*(x-1/2/b*a)/(-b*x^2+a*x)^(1/2))*(x*(-b*x+a))^(1/2)/x^(1/2)/(-
b*x+a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x+a)^(1/2)/x^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.66598, size = 246, normalized size = 5.23 \begin{align*} \left [\frac{\sqrt{-b} x \log \left (-2 \, b x + 2 \, \sqrt{-b x + a} \sqrt{-b} \sqrt{x} + a\right ) - 2 \, \sqrt{-b x + a} \sqrt{x}}{x}, \frac{2 \,{\left (\sqrt{b} x \arctan \left (\frac{\sqrt{-b x + a}}{\sqrt{b} \sqrt{x}}\right ) - \sqrt{-b x + a} \sqrt{x}\right )}}{x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x+a)^(1/2)/x^(3/2),x, algorithm="fricas")

[Out]

[(sqrt(-b)*x*log(-2*b*x + 2*sqrt(-b*x + a)*sqrt(-b)*sqrt(x) + a) - 2*sqrt(-b*x + a)*sqrt(x))/x, 2*(sqrt(b)*x*a
rctan(sqrt(-b*x + a)/(sqrt(b)*sqrt(x))) - sqrt(-b*x + a)*sqrt(x))/x]

________________________________________________________________________________________

Sympy [A]  time = 1.82019, size = 150, normalized size = 3.19 \begin{align*} \begin{cases} \frac{2 i \sqrt{a}}{\sqrt{x} \sqrt{-1 + \frac{b x}{a}}} + 2 i \sqrt{b} \operatorname{acosh}{\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}} \right )} - \frac{2 i b \sqrt{x}}{\sqrt{a} \sqrt{-1 + \frac{b x}{a}}} & \text{for}\: \frac{\left |{b x}\right |}{\left |{a}\right |} > 1 \\- \frac{2 \sqrt{a}}{\sqrt{x} \sqrt{1 - \frac{b x}{a}}} - 2 \sqrt{b} \operatorname{asin}{\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}} \right )} + \frac{2 b \sqrt{x}}{\sqrt{a} \sqrt{1 - \frac{b x}{a}}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x+a)**(1/2)/x**(3/2),x)

[Out]

Piecewise((2*I*sqrt(a)/(sqrt(x)*sqrt(-1 + b*x/a)) + 2*I*sqrt(b)*acosh(sqrt(b)*sqrt(x)/sqrt(a)) - 2*I*b*sqrt(x)
/(sqrt(a)*sqrt(-1 + b*x/a)), Abs(b*x)/Abs(a) > 1), (-2*sqrt(a)/(sqrt(x)*sqrt(1 - b*x/a)) - 2*sqrt(b)*asin(sqrt
(b)*sqrt(x)/sqrt(a)) + 2*b*sqrt(x)/(sqrt(a)*sqrt(1 - b*x/a)), True))

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x+a)^(1/2)/x^(3/2),x, algorithm="giac")

[Out]

Timed out